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The Mechanism of Complex Langevin Simulations 
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We discuss conditions under which expectation values computed from a 
complex Langevin process Z will converge to integral averages over a given 
complex-valued weight function. The difficulties in proving a general result 
are pointed out. For complex-valued polynomial actions, it is shown that for a 
process converging to a strongly stationary process one gets the correct answer 
for averages of polynomials if c~(k)~ E(e i~z(~)) satisfies certain conditions. If 
these conditions are not satisfied, then the stochastic process is not necessarily 
described by a complex Fokker-Planck equation. The result is illustrated with 
the exactly solvable complex frequency harmonic oscillator. 
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1. I N T R O D U C T I O N  

It is well known that a straightforward application of standard simulation 
techniques like the Metropolis e t a l .  (1) algorithm will fail when they are 
applied to problems with a complex action or Hamiltonian. This is due to 
the fact that there is no direct probabilistic interpretation of a distribution 
function of the form e - s  when the action S is complex valued. As an alter- 
native to such algorithms, the complex Langevin (CL) method was first 
proposed by Klauder (2) and subsequently studied by many authors. The 
central idea of CL is based on the fact that for a Langevin equation there 
is no formal restriction to a real-valued drift term. The use of a complex 
drift term provides CL with a genuine advantage over other methods; 
namely, since CL uses the entire complex action S to define a stochastic 
process, it can in principle converge directly to the desired distribution. 
This potential for circumventing the well-known "sign problems" of other 

t Institut ffir Theoretische Physik, Universit/it Graz, A-8010 Graz, Austria. 
2 Department of Physics, University of Florida, Gainesville, Florida. 

1 47 

0022-4715/93/1000-0147507.00/0 �9 1993 Plenum Publishing Corporation 



148 Gausterer and Lee 

standard algorithms is just one reason CL continues to be a subject of 
great interest. 

Quite independent of its utility as a numerical technique is the interest- 
ing fact that under certain conditions a system governed by a complex 
Hamiltonian can nevertheless be given a probabilistic interpretation. 
Indeed, the name complex Langevin may be slightly misleading, since the 
Langevin equations really describe a real diffusion process in twice as many 
dimensions. 

Unfortunately, there is currently no complete theory of the CL 
method. Many conditions under which a real Langevin process can be 
shown to converge to a given distribution are not satisfied for a general CL 
process. Furthermore, from the point of view of numerical simulations, in 
some cases CL is known to converge to the wrong results. (3'4) For  simple 
actions, this truant behavior can be corrected by an appropriate choice of 
kernel in the Langevin equation, (5) but for more general systems, in 
particular lattice fermion models of current interest, it is far from clear 
which choice of kernel is required. 

The purpose of this paper is to explore in a rigorous fashion the condi- 
tions under which the CL process correctly simulates a given system with 
a complex Hamiltonian defined on a Euclidean space x e JR'. While a 
general theorem is still lacking, we will demonstrate a set of sufficient 
conditions for polynomial actions. 

2. THE PROCESS 

Throughout  the paper we will assume that the system is described by 
variables x e R" with some complex action or Hamiltonian S: R " ~  C, 
where Re S is bounded from below. For  simplicity the discussion will be 
restricted to one degree of freedom, since the following statements allow for 
an immediate generalization to R". The quantities of physical interest are 
of the form 

(g (x ) )  = - ~  g(x) e -s(x) dx (2.1) 

A/" = f~ e-S(x) dx (2.2) 

assuming that for the partition function Ar we have 0 < ]Yi  < oo. Both 
g(z) and S(z) are assumed to be analytic in C. Since S(z) is analytic, this 
provides a local Lipschitz condition for the Langevin equation (2.8); 
that is, (2.8) has a unique local solution that is defined up to a random 
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explosion time3 6) For real actions S e  ~ we define a process {X(~), r>~0} 
by the Langevin equation 

dX(z) = F(X(~)) dr + dW(r) (2.3) 

with the drift term 

1 dS(x) 
F ( x ) =  2 dx (2.4) 

where W(r) is a standard Wiener process with zero mean and covariance 

(W(r l )  W(r2) ) = min(%, %) (2.5) 

The probability density f (x ,  r) for such a process will converge pointwise 
to the desired distribution function. That is, 

lim f(x, r)=f(x) a.e. (2.6) ~+oo 

with 

1 
f ( x ) = - ~ e  sr (2.7) 

As already mentioned in the introduction, for the complex case one 
can formally construct a Langevin equation 

dZ(r = F(Z(r dr + cIW(r (2.8) 

with the drift term 

1 dS(z) 
F(z )=  2 dz (2.9) 

As above, W(r) is a standard Wiener process. This is actually a two- 
dimensional process of the form 

dX(r) = G(X(r), Y(r)) dr + dW(z) (2.10) 

dY(v) = H(X(r), Y(~)) dr (2.11) 

with S(z) = u(x, y) + iv(x, y), 

1 ~3u(x, y) 

2 ~?x ' 
1 &(x, y) 

H(x, y)= 
2 ay 

G(x, y ) =  (2.12) 



150 Gausterer and Lee 

Note that the equation for dY has a zero diffusion coefficient, but is 
nevertheless a stochastic equation through its dependence on X. 

The process {(X(r), Y(z)),z~>0} as defined by Eq. (2.8) has a dis- 
tribution density f(x, y, z). There are now two crucial questions concerning 
this process. The first question is whether this so defined process converges 
in distribution at all to some (J(, Y), 

lim f(x, y, r)=j~(x, y), a.e. (2.13) 
" c ~ o O  

The second question has to do with the problem of whether j~(X, y) satisfies 

E(g( X + i  Y))= f~2 g(x + iy) f(x,y) dx dy = 1 fR g(x) e -s(x) dx (2.14) 

This equation contains the essence of complex Langevin. It tells us that if 
the process as defined above has converged in distribution, we might be 
able to calculate (g(x))  by an equivalent probabilistic system of twice as 
many dimensions. 

Before we investigate Eq. (2.14) it is necessary to discuss the 
asymptotic behavior of X(v), Y(z) for z ~ oe. To do this we will examine 
the equivalent Fokker-Planck (FP) equation. First note that since the 
diffusion and drift coefficients are independent of ~, the process (J((r), Y(v)) 
is a homogeneous diffusion process. For twice continuously differentiable 
distribution densities with respect to x, y and once with respect to T, there 
exists a FP equation. (6) Then the equivalent FP equation for the above 
Langevin equation is 

Of(x, y, ~) 
Tf(x, y, T) (2.15) & 

with 

~x 82 T= -Gx(x, y ) -G(x ,  y) -Hy(x,  y ) -H(x ,  y) ~---f +~ Ox 2 (2.16) 

As may be seen from the above equation, this case only requires a 
continuous first-order derivative with respect to y. Let us first assume that 
T has a unique stationary solution f (x ,  y), 

TJ'(x, y) = 0 (2.17) 

with 

f (x ,  y)~>0, a.e. (2.18) 
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and 

j ( x ,  y) dx ay = 1 

One can then use J~(x, y) to define an invariant measure 

(2.19) 

= f ( x ,  y ) a x d y  (2.20) 

with respect to L~ = exp(Qz), r ~> 0, which is defined as an operator family 
in LP(~ 2, d//) (p = 1, 2). The operator Q is obtained by transforming T to 
LI (~  2, d/t) by 

Q = f  1Tf (2.21) 

Then there is a theorem which tells us that {L~, r ~>0} is a contraction 
semigroup, (7) from which it follows that for any function ~ L P ( ~  2, d#), 
p = 1, 2, one has convergence in the strong sense 

s-lim L,~b = c~ (2.22) 

where c~ is a constant. Since #(N2)< ~ ,  any distribution density f (x ,  y, 3) 
converges pointwise to the stationary solution 

lim f(x, y, r)=jT(x, y) a.e. (2.23) 
- c ~ c o  

On the other hand, if the zero eigenvalue of T is M-fold degenerate, 
then there are M ergodic classes. In this case we have 

M 

lim f(x, y, 3)= ~ cir,(x, y) a.e. (2.24) 

Unfortunately, it is still an open question as to what conditions 
guarantee the existence of a stationary solution at all. Note that the CL 
process defined by the real two-dimensional equations (2.10) and (2.11) has 
a singular diffusion matrix. Therefore, a general statement on the existence 
of stationary solutions cannot be made based on the nature of the drift 
terms. 

Further, T does not fall into the class of hypoelliptic operators of 
constant strength for general S(x + iv), (x, y)~ ~2. In this case a general 
statement on the regularity of the solutions cannot be made(8); thus one 
cannot exclude the possibility that the solutions T f = 0  exist only in the 
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sense of distributions (weak solutions). If this is the case, then it might be 
quite difficult to find (construct) the stationary density. 

It is easy to see that a situation like this can occur with the very simple 
example S(x )=cx  2, cE~  +, which is now supposed to be solved by 
complex Langevin. The Langevin equation reads 

dX(z) = -cX(z)  dz + dW(z) (2.25) 

dY(z) = -cY(z )  dz (2.26) 

The stationary density )~(x, y) is then a weak solution and can be formally 
given as 

j~(x, y) ~ e-CX2~(y) (2.27) 

From the above one also must conclude that in general f (x ,  y) cannot 
be assumed to be a Gibbsian density, i.e., f cannot be assumed to be of the 
form f =  exp(q~) with q~ some real potential. This situation is acceptable, 
since the physics of the system is described by the complex distribution 
exp( -S) .  The CL method and thus the resulting stationary distribution 
merely serve as a convenient algorithm to simulate such complex densities. 

3. P O L Y N O M I A L  A C T I O N S  

Returning to the question of Eq. (2.14), we now demonstrate the 
following general result: let S(x) and g(x) be polynomials of degree N and 
M ( M ~ < N - 1 )  and S(x) such that e-S~Sr 5e(~) is the Schwartz 
space of C ~ functions of rapid decrease. Assume Z(~) converges in 
distribution to a strongly stationary process. Then Eq. (2.14) holds if there 
exists a z 0 such that for all z >/%: 

1. We have 

]E(Z~(v) eikZr < 

2. The Fourier transform 

forall O<~n<<.N-1, k ~  (3.1) 

of the expectation value 

E(e ikz(~)) =- c~(k ) (3.3) 

satisfies h(x, z)~ C2(~) with respect to x, and h(x, t)~ C1(~) with respect 
to z. Furthermore, x u ~h(x, ~) ~ LI(O~, dx). 
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3. We have 

lim c~(k) E 6e(~) (3.4) 

Before proving this result, we note that condition 3 is also a necessary 
condition for Eq. (2.14), since, by assumption, e - S e 5  a. Also, requiring 
c~(k)eSe(N) would be a simplification of condition 2. However, this 
requirement for all c,(k) might be too restrictive. 

Under the above assumptions we have 

(e ikx(*) ) = E(e ikz(~)) (3.5) 

where (g(x(~)))  is given by 

( g ( x ( ' c ) ) ) = f  g(x) h(x, r)dx (3.6) 

From assumption 2 it follows that G(k)~ C N- 1(~), and thus we can 
conclude that for f (x )  = e ikx 

(df(Z(v)) dS(Z(z))~ /d/(x(T)) dS(x(~))\ 
E\ dZ(~) dZ(~) / = \  dx(O dx(~) / 

E (dzf(Z(~))'~ = / d2f(x(z))\ 
\ dZ~(~) / \ dx~(~) / 

(3.7) 

(3.8) 

and that the surface terms in the above integral expressions vanish. Thus 
h(x, ~) obeys the pseudo-FP equation with a complex drift term 

0~ - 2 Ox [_ ~x ~x h(x, 7:) = Th(x, z) 

The operator (~, which is T transformed to L~(N, d/3) by 

where d/3 is given by 

(3.9) 

Q=eSTe -s  (3.10) 

dfi(x)= l e - s ( x )  dx (3.11) 

has a zero eigenvalue with eigenfunction 

~(x)  = 1 (3.12) 
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However, we also note that Q has a second solution of zero eigenvalue in 
LI(N, dfi) given by 

[ ts(X ) -.= e S(y) dy (3.13) 
o 

Although e-S(~)hs(x ) is in general not positive definite, and hence 
automatically excluded when S is real, it is not a priori clear that h(x, 3) 
e-S(x)hs(x ) a.e. is excluded for complex S. 

But note that 

eS(X ) 
[~s(x) = (9 \ S x S ( x ) ]  for [xt ~ oo (3.14) 

Therefore one has 

(1) 
e S(x)hs(x ) = (9 for Ixl -~ ~ (3.15) 

where N is the degree of the polynomial S(x). Thus e s(x)[z,(x)q~ 5r 
which contradicts (3.4). So e S(x)[l,(x) cannot be the limit of h(x, T). As 
was true with the real-S case, the finite measure fi implies that all solutions 
of (3.9) satisfying (3.2) converge pointwise to the desired result. 

The above three conditions appear to be a necessary set which must 
be satisfied in order to connect the Langevin process Z to the complex 
Fokker-Planck equation (3.9). These conditions also guarantee the correct 
convergence of the first N - 1  moments. More generally, however, any 
higher moment E(Z"(O)  which does exist will converge correctly if h(x, ~) 
is such that [(x"(~))[  < oo. 

Two conclusions from this analysis are especially worth noting. First 
of all, we have seen that the complex Fokker-Planck equation has been 
derived under certain assumptions about the Langevin process. If these 
criteria are not met, in particular if the function c,(k) is ill behaved, then 
there is no longer necessarily a relation between the CL equation and the 
complex Fokker-Planck equation. This is true even if the spectrum of the 
complex FP  equation is such that all solutions converge to the desired 
stationary solution. Second, our result implies that the success or failure of 
the CL method only depends on the properties of the two eigenfunctions 
of the zero eigenvalue of (~ and not on the requirement that the real part 
of the spectrum of (~, Rea(~))~<0. Thus, we see that, although it is 
certainly more convenient if Re a((~)~< 0, an analysis of the spectrum is 
neither necessary nor sufficient for studying the behavior of the CL process. 
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4. A N  E X A C T L Y  S O L V A B L E  E X A M P L E  

For the Gaussian model S(x)=cow 2, co=a+ib~C+, the two- 
dimensional real Fokker-Planck equation has the correct unique station- 
ary density to which all initial solutions converge. (9) The transition density 
is given by 

f (x,  y, "fix 0, Y0, 0) ~ exp[ - rr('c) Z'-1(r) r('r)] (4.1) 

with 

r l ( r )=x -ml ( x o ,  Yo, z), r2('c)=Y-m2(xo, Yo, z) (4.2) 

For the detailed form of the matrix X(r) and the vector m(xo, Yo, ~), the 
reader is referred to ref. 9. As mentioned above, the transition density 
converges to the stationary density 

lirnoof(x,y, rlxo, Yo, O)~ex p -2 a  x 2 + 2 ~ x y +  1+ b 2 j Y  2 (4.3) 

With the transition density we have 

c~(k ) = E(e ikz(~)) = f=2 ei~ dx dy f~,2 f(x,  y, r Ix 0, Yo, 0) f(xo, Yo, 0) dxo dyo 

(4.4) 

from which it follows that for f(xo,  Yo, O)= (5(x o - x ' ) 6 ( y o -  y'), c~(k) has 
the form 

c~( k ) ~ e-k2~(~'b'~) (4.5) 

By examining the form of the matrix X(r), one can see that there always 
exists a ro such that for all r >~ %, the real-valued function c~(a, b, z )>  0. 
Clearly, c~(k)e 6e(~), and conditions 1-3 hold. 

Since in this case the ground state of T is unique, by the preceding 
analysis it follows that all initial states converge to the proper probability 
density. 

It is interesting to note that for quadratic polynomials it can be 
demonstrated that all solutions to the complex Fokker-Planck equation 
which are in L2(~, d/~) converge to the ground state of 0 or to zero. Note 
that all square-integrable solutions are also absolutely integrable (L 1) in 
this case. 

In this example the complex Fokker-Planck equation can be solved 
exactly. For the above range of the complex coupling co, the spectrum of 
0 satisfies Re[a(O)]  ~<0, and the eigenfunctions of 0 defined on L2(~, d/~) 
form a basis. 
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To see this, note that 

Q. = �89 e s/2 (4.6) 

where H is now the ordinary Schr6dinger operator for the complex 
frequency extension of the harmonic oscillator with a zero-energy ground 
state. With the help of the dilatation operator, which is given by (t~ 

Uo~P(x ) = e~176 (4.7) 

one can now show the completeness of the eigenfunctions of H. First note 
that the domain D(Uo) is dense in L2(~, dx). Second, the eigenfunctions of 
the real harmonic oscillator are in D(Uo) for Re[exp(20)]  > 0. The dilata- 
tion operator maps the eigenfunctions of the real harmonic oscillator to the 
eigenfunctions of the complex harmonic oscillator. Now for all functions 
O(x)eD(Uo) and O,(x) the nth eigenfunction of the real harmonic 
oscillator, we have 

(0, UotP,)=(Uo~O,~n) =0, forall  n (4.8) 

if and only if U o l~b = 0, which implies ~b = 0. But since U o ~b for ~b ~ D(Uo) 
is dense, the eigenfunctions of the complex harmonic oscillator form a 
complete basis. Thus 

s-lim h(x, z) =/~(x) or 0 (4.9) 
T ---~ o o  

for all solutions h(x, :) E L2(~, d/i) of 

Oh(x, ~) Q h(x, :) (4.10) 
Or 

Again, from/~(N) < oo one can conclude that h(x, :) converges pointwise. 

5. C O N C L U S I O N S  

To date there is no comprehensive theory of the complex Langevin 
method. General results are difficult to prove because many theorems on 
differential operators and diffusion processes do not apply to T and the 
Langevin equations. However, for the case of polynomial actions we have 
demonstrated a set of sufficient conditions to guarantee convergence of the 
CL method to the correct results. 

An extension of these results from polynomial actions to the more 
general case of an analytic S requires a more detailed understanding of 
the solutions f(x,  y, ~) of T. Also of interest would be similar results for 
compact manifolds. Work is currently progressing in these directions. 
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